STRUCTURAL CALCULATIONS FOR KINGPOST RETAINING STRUCTURE AT 5 HILLSIDE CLOSE LODON NW8 0EF

CLIENT

Trio Homes UK Ltd Vineyards Business Centre 36 Gloucester Avenue Primrose Hill, London NW1 7BB

STRUCTURAL ENGINEER

Surrey Hills Consulting Engineers Alexander House 40A Wilbury Way Hitchin, Herts SG4 0AP

Date: Job Reference: Prepared By: 19th June 2023 SH2304 N Khan (BEng. MSc.) Senior Structural Engineer

Donte June 23 Project By N.K. 2304 Ref Rebring wall Page 1 KEYN 152 ve solles 5355 with 2.0m space of King posts & 2.2 m depth Insersin using 350 Augar bores C30 concrete. Concrete or \$30 200x125 deep timbers Panels

BY: N.K. Date June 23. Project No 2304 Ref. Retoring wall Page 2 PROJECT:-To Support existing Retaining structure at The hear of Property Incated at 5 Hillside close London NW8 OEF to Jacilitat cal new retaining Francher over Piles. Temporary King Post retaining structure is looposed to foilitate above The design has been consider out according to British standards & NHBC Reaguirement King Post betaing structure + concrete lomels inhetwee to ration soil @ max 2.0m height with 2.0m c/c The steel posts (ing posts) will be insected i 350mm Augar bore tilled with 130 N/mm concrete. The steel strage to be 355 N/mm Assimptions: - Surcharge = 10 km/m⁻ soil density = zokn/m³ = 10 ka)/m = 300 В Ka Iep E 0. 33 = 3.33

By: N.K tate Ine 23 Project 2304 Prace 4 Ref Retaining Steel post with concrete stupers beign For 2.0 m height bost Retain. Surcharge Say = 10.0 few/m soil density = 20 ku/m3 q = 30° 2.01 ka = 0.33 Kp = 3.33 h = 2.0 FP FA = 1 rh2 ka -= 1/2 × 20 × (2.0) × 0.33 = 13.2 ko/m Fs = Bx ka = 3.3 ka/m. = 10 x 0.33 & post a 2.0 m : FA = 26.4 KN. $F_S = 6.6 \text{ km}$ Take moment at point x $M_{y} = F_{A}\left(\frac{2.0}{3} + \frac{h^{2}}{3}\right) + F_{S}\left(\frac{2.0}{2} + \frac{h^{2}}{3}\right) = 0$ $= \frac{26.4}{2} \left(2 + \frac{1}{2} \right) + \frac{3 \cdot 3(1 + \frac{1}{3})}{2} = 0.$

BJ. N.R Date Jue 23 Project 2304 Ref. Retaining Page 15 $M_{1} = 17.60 + 8.8h_{2} + 3.3 + 1.1h_{2} = 0.$ => tr2 = 2.11 Son 2.2 m deep Use 2.2 m deep Insertion Design moment for steel post $M = F_{A}(\frac{2.0}{3}) + F_{4}(\frac{2}{2})$ $\exists M = (26.4(\frac{2}{3}) + 6.6) \times 1.4 = 33.88 \text{ kJ}_m.$ Capacity of 152 UC 30 leg => Mx = 67.6 km m Tedds Analysis Page 6,7 Passive Resistance -Fp = 12 yhzx kp = 12 × 20x (2.2) × 3.33. × 2 × 0.35 = 37.6 km ac. Hence Section is Odequate

Project 5 Hillside Clo	Project 5 Hillside Close London				Job Ref. SH2304	
Section	Section				Sheet no./rev.	
King post	King post				6	
Calc. by N.K	Date 19/06/2023	Chk'd by	Date	App'd by	Date	
	•		•	•		_

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

SURREY HILLS	Project 5 Hillside Clo	Project 5 Hillside Close London						
I III CONSULTING ENGINEERS LIMITED	Section King post	Section King post				Sheet no./rev. 7		
	Calc. by N.K	Date 19/06/2023	Chk'd by	Date	App'd by	Date		
		Support B		Dead >	< 1.40			
				Impose	ed × 1.60			
Analysis results								
Maximum moment		$M_{max} = 0 \text{ kNm}$		IVImin = -34.6 KINM Vmin = 0 kN				
Maximum shear		$V_{\text{max}} = 47 \text{ KIN}$		$v_{min} = 0 \text{ mm}$				
Deflection		$R_{\Lambda max} = 47 \text{ kN}$	J	$Omin - \mathbf{U} \Pi \Pi$ $\mathbf{R}_{A min} = \mathbf{A7} \mathbf{kN}$				
Unfactored dead load reaction	n at support A	RA Dead = 33.6	kN	• ••	47 101			
Maximum reaction at support	B	$R_{B max} = 0 kN$		R _{B min} = 0 kN				
Section details		_		-				
Section type	UC 152x152x30	(BS4-1) Ste	el grade		S355			
	157.6 ►	6	5					
Classification of cross sect Tensile strain coefficient	ions - Section 3.5 ε = 0.88	Se	ction classificatio	ภา	Compact			
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2	ions - Section 3.5 ε = 0.88 2.3	Se	ction classificatio	งท	Compact			
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force	ions - Section 3.5 ε = 0.88 2.3 F _v = 47 kN	Se	ction classificatio	on ance	Compact $P_v = 218.2 \text{ kN}$	i		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force	ions - Section 3.5 ε = 0.88 2.3 F _v = 47 kN	Se De PA	ection classification sign shear resist SS - Design she	on ance <i>ar resistan</i>	Compact $P_v = 218.2 \text{ kN}$ ce exceeds des	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4	ions - Section 3.5 ε = 0.88 2.3 F _v = 47 kN 4.2.5	Se De PA	ction classification sign shear resist SS - Design she	on ance <i>ar resistan</i>	Compact $P_v = 218.2 \text{ kN}$ ce exceeds des $M_v = 87.0 \text{ kblm}$	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment for	ions - Section 3.5 ε = 0.88 2.3 F _v = 47 kN 4.2.5 M = 34.8 kNm actor - Section 4.3.6	Se De PA Mo	ction classification sign shear resist SS - Design she oment capacity lo	on ance ar resistan w shear	Compact $P_v = 218.2 \text{ kN}$ ce exceeds des $M_c = 87.9 \text{ kNm}$	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6 $m_T = 1.000$	Se De PA Mo .6	ection classification sign shear resist SS - Design she oment capacity lo	on :ance <i>ar resistan</i> w shear	Compact P _v = 218.2 kN ce exceeds des M _c = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equivalent uniform moment fa Equivalent uniform moment factor LTB	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6 $m_{LT} = 1.000$ at - Section 4.3.6 4	Se De PA Mo .6	ection classification sign shear resist SS - Design she oment capacity lo	on :ance <i>ar resistan</i> w shear	Compact P _v = 218.2 kN ce exceeds des M _c = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB Buckling resistance moment	ions - Section 3.5 ε = 0.88 2.3 F _v = 47 kN 4.2.5 M = 34.8 kNm actor - Section 4.3.6 m _{LT} = 1.000 1t - Section 4.3.6.4 Mb = 57.7 kNm	Se De PA .6	ection classification sign shear resist SS - Design she coment capacity lo	on ance ø ar resistan w shear	Compact P _v = 218.2 kN ce exceeds des M _c = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB Buckling resistance moment Buckling resistance moment	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6 $m_{LT} = 1.000$ it - Section 4.3.6.4 $M_b = 57.7 \text{ kNm}$	Se De PA Ma .6 Ma PASS - Bucki	ection classification esign shear resist SS - Design she oment capacity lo / m _{LT} = 57.7 kNr <i>ing resistance r</i>	on ance a ar resistan w shear n n noment exe	Compact P _v = 218.2 kN ce exceeds des M _c = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB Buckling resistance moment Buckling resistance moment	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6 $m_{LT} = 1.000$ nt - Section 4.3.6.4 $M_b = 57.7 \text{ kNm}$	Se De PA .6 .6 M⊧ PASS - Bucki	ection classification sign shear resist SS - Design she oment capacity lo / m⊾⊤ = 57.7 kNr <i>ing resistance r</i>	on ance w <i>ar resistan</i> w shear n noment exe	Compact P _v = 218.2 kN ce exceeds des Mc = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB Buckling resistance moment Buckling resistance moment Check vertical deflection - S Consider deflection due to de	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6. $m_{LT} = 1.000$ nt - Section 4.3.6.4 $M_b = 57.7 \text{ kNm}$ Section 2.5.2 ad and imposed loa	Se De PA .6 .6 M⊧ PASS - Bucki	ection classification sign shear resist SS - Design she oment capacity lo / m _{LT} = 57.7 kNr <i>ing resistance r</i>	on ance a r resistan w shear n noment exe	Compact P _v = 218.2 kN ce exceeds des M _c = 87.9 kNm	ign shear f		
Classification of cross sect Tensile strain coefficient Shear capacity - Section 4.2 Design shear force Moment capacity - Section 4 Design bending moment Equivalent uniform moment fa Equiv uniform mnt factor LTB Buckling resistance moment Buckling resistance moment Check vertical deflection - S Consider deflection due to de Limiting deflection	ions - Section 3.5 $\varepsilon = 0.88$ 2.3 $F_v = 47 \text{ kN}$ 4.2.5 M = 34.8 kNm actor - Section 4.3.6 $m_{LT} = 1.000$ nt - Section 4.3.6.4 $M_b = 57.7 \text{ kNm}$ Section 2.5.2 ad and imposed loa $\delta_{lim} = 8 \text{ mm}$	Se De PA. Ma .6 Ma PASS - Bucki ds	ection classification sign shear resist SS - Design she oment capacity lo / m⊾⊤ = 57.7 kNr <i>ing resistance r</i> ximum deflection	on ance a ar resistan w shear n noment exe	Compact $P_v = 218.2 \text{ kN}$ ce exceeds des $M_c = 87.9 \text{ kNm}$ ceeds design be $\delta = 4.637 \text{ mm}$	ign shear i ending mol		

Project	BY: NIK	Dote Jul 23
2354	Ref Retaining w	M Page -8
S. I. M. M.	5	
Amor Skeptsi	my .	ty th
X	\$ 5°	2,00
A(1) + 4 + 4 = 13	.273.3 = 16.58 kau	/
toad on 200 mm	sleeps	
P= 16.5× 0	2 = 3.30 ke	s/m.
L = 2.0 m	2	
M = we	= 3.30 a (2)	lg = 1.65 en.m.
A. bd-	M/5	
6	10	
Dreg =	$6 \times 1.65 \times 10 = 3.1$ $200 \times (125)^{2}$	6 Norm
or		
A = 5 WLY	< 0.003×L	
Soy EF	(2,) 4	
= 384 3.3X 7201	(ZOU K (125) 3 50.00	3x 2000
- 797	2 6 0	
~ ~ , / \$ ~		
Hene D	30 Section 15 a	Odequak.
Difference and a second s	2	

King post Retaining wall

Everything you need to know about a king post retaining wall in 3.5 minutes

Bob Evans

Retaining Wall Solutions

King Post Structural Design and Sketch

Pile vibration and auger drilling methods for post installation

Textured finish to concrete panels

Plain concrete finish panels

Retaining Wall Solutions

Height (mm)	500	1000	1500	2000	2500	3000	3500
Post Centers (mm)	2000	2000	2000	2000	2000	2000	2000
Post Section	152 x 152 UC	152 x 152 UC	152 x 152 UC	203 x 203 UC	203 x 203 UC	203 x 203 UC	254 x 254 UC
Post weight (kg)	23 kg	23 kg	30 kg	46 kg	60 kg	86 kg	107 kg
Post Embedment (m)	0.5	1.0	1.5	2.5	3.5	4.5	5.5
Post Length (m)	1.0	2.0	3.0	4.5	6.0	7.5 m	9.0
Post Hole Diameter (mm)	450	450	450	450	450	450	450
Surcharge	10kn/m²						
Factor of Safety	M=1.5						
Sketch							

Design table to give you some examples for various wall heights

Design

Types V Case studies

Knowledge base

Contact us

Get price guide

Retaining wall design and price guide

Which retaining wall type is the most economical to build? **Download the design guide** to learn more about each retaining wall type and get a price comparison.

Design price guide

Ask a question

How much do they cost?

Our simple 3 steps

Design process

Step 1 - Decide on the type of retaining wall

One of the hardest things to do is to select the right retaining wall type.

Each retaining wall type has pros and cons.

Our support can help you select the right one for your requirements and budget.

Step 2 - Design the retaining wall

2

Our structural engineer is a specialist retaining wall expert. We can turn around retaining wall designs in a matter of days.

You will receive a full retaining wall report, a complete set of calculations, and a sketch showing you the design, including the material specifications.

You will also be protected by our professional indemnity insurance allowing you to sleep at night.

3 Step 3 - Use our supply chain to get the best build

price

We have a comprehensive supply chain for the supply only or supply and installation of your retaining wall once it has been designed.

We can prepare material schedules and bills of quantities to give you a budget to work from.

You can save time and money trying to find suitable suppliers and contractors using our service.

King post Retaining wall

Bob Evans

The Next Step

- Tell us about your project.
- Complete the form.
- We are here to support you.